A Method of Disease Detection and Segmentation of Retinal Blood Vessels using Fuzzy C-Means and Neutrosophic Approach
نویسندگان
چکیده
Diabetic Retinopathy is a disease which causes a menace to the eyesight. The detection of this at an early stage can aid the person from vision loss. The examination of retinal blood vessel structure can help to detect the disease, so segmentation of retinal blood vessel vasculature is important and is appreciated by the ophthalmologists. In this paper, we present the approach of blood vessel segmentation using computer intelligence by deploying fuzzy c-means and neutrosophic set. Further, the input image is scrutinized and the result achieved is whether the image is diseased or not. The various diseases detected in this technique are cotton wool spots, exudates and lesions with the help of region growing and neural network classification method. The proposed approach is tested on DRIVE and DIARETDB1 databases and is compared with the other approaches. The segmentation approach achieved the average accuracy of 98.7% whereas the diseased image was detected with 99% accuracy. Keywords— Diabetic Retinopathy, Retina, Blood vessels, Neutrosophy, Fundus Images, Segmentation .
منابع مشابه
Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters
In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...
متن کاملMorphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal
Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...
متن کاملUnsupervised Retinal Vessel Segmentation Using Combined Filters.
Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels' appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi's filter and Gabor Wavelet filter to enh...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کامل